| English | Arabic | Home | Login |

Published Journal Articles

2019

THE EFFECTS OF 2-HYDROXY CHALCONEAND ITS DERIVATIVE ON THE LARVAE AND ADULTS OF TRIBOLIUM CONFUSUM

2019-09
SJUOZ (Issue : 3) (Volume : 7)
ABSTRACT:2-Hydroxy Chalcone and its derivatives (compounds 1and 2) were used in a toxicity test on the larvae and adults of confused flour beetle Tribolium confusum (Du Val). Mortality tests were done by applying different concentrations (0.01, 0.02 and 0.04 ppm) on2-Hydroxy Chalcone and its derivatives whichwere exposed by topical application with 5 μL of each compound and the data wererecorded after 24 h of treatments. The mortality % of[7-Hydroxy-9-(pyridine-4-yl)-6H-benzo[C]chromen-6-one]in(compound 2) were 26.6, 50 and 76.67% and 16.67, 36.67and 63.3% and 13.3, 23.3 and 36.6 % to 3rd, 5th instar larvae and adults, respectively. While in[ 3-thinyl-1-(2-hydroxynaphthyl) -1-propene] (compound 1), the mortality % were 23.3, 40 and 66.6% and 13.3, 30and 56.6% and 6.6, 16.6 and 26.6 % to 3rd, 5th instar larvae and adults, respectively. The results indicated that (comp.2) was the most toxic one and (comp.1) was the least toxic to confusedflour beetle when applied singly. The calculated LC50 values to (compound 2) were 0.019, 0.028 and 0.074 ppm to 3rd, 5th instar larvae and adults, respectively. While to (compound 1), the LC50 valueswere 0.025, 0.034 and 0.106 ppm to 3rd, 5th instar larvae and adults, respectively. The order of toxicity of the chemical compounds was 2 > 1. These chemical compounds can be used to control confused flour beetle

Protective Effect of Dietary Taurine from ROS Production in European Seabass under Conditions of Forced Swimming

2019-08
Animals (MDPI) (Issue : 9) (Volume : 9)
Taurine (Tau) is an amino sulfonic acid, which is widely distributed in animal tissues, whereas it is almost lacking in plants with the exception of certain algae, seaweeds, and few others. In the aquafeed industry, Tau is mainly used as a feed additive to promote growth in marine fish species with limited cysteine sulfinate decarboxylase activity. In particular, Tau supplementation is required in feeds in which fishmeal (FM) is substituted with high percentages of plant-derived protein sources such as soybean meals (SBM) that have much lower levels of Tau than FM. In addition to being a growth promoter, Tau exert powerful antioxidant properties being a scavenger of the reactive oxygen species (ROS). Under sustained swimming conditions, an intracellular increase in ROS production can occur in fish red muscle where the abundance of mitochondria (the main site of ROS formation) is high. Accordingly, this study aimed at investigating the effects of dietary Tau on European seabass (Dicentrarchus labrax) growth and oxidative stress response induced by swimming exercise. Individually tagged fish of 92.57 ± 20.33 g mean initial weight were fed two experimental diets containing the same low percentage of FM and high percentage of SBM. One diet was supplemented with 1.5% of Tau. Tau supplemented in the diet had a positive effect on fish growth, and enhanced swimming performance and antioxidant status. Two swim endurance tests were performed during the feeding trial. Metabolic oxygen consumption (MO2) was measured during exercise at incremental swimming speeds (0.7, 1.4, 2.1, 2.8, 3.5, and then 4.2 BL (body length) s−1, until fatigue). Fish maximal sustainable swimming speed (Ucrit) was determined too. To investigate the antioxidant effect of dietary Tau, we also measured ROS production in fish blood by RBA (respiratory burst activity) assay and quantified the expression of genes coding for antioxidant enzymes by qPCR (quantitative polymerase chain reaction) , such as SOD (superoxide dismutase), GPX (glutathione peroxidase), and CAT (catalase) in red muscle and liver. There was a significant effect of Tau upon Ucrit during exercise. Additionally, ROS production was significantly lower in fish fed with Tau supplemented diet, supporting the role of Tau as ROS scavenger. The protective effect of Tau against oxidative stress induced by forced swimming was denoted also by a significant decrease in antioxidant enzymes gene expression in fish liver and muscle. Taken together these results demonstrate that Tau is beneficial in low FM-based diets for seabass.

Back