| English | Arabic | Home | Login |

Published Journal Articles


Some novel solutions of the coupled Whitham-Broer-Kaup system

CMES 2019, AISC (Volume : 1.111)
The shallow water equations have a wide range of applications in the ocean, atmospheric modeling, and pneumatic computing, which can also be used to modeling flows in rivers and coastal areas. In this study, we build the analytic traveling wave solution of the (1+1) dimensional coupled Whitham-Broer-Kaup (WBK) equations, by using the Bernoulli sub-equation function method. The system of (1+1)-dimensional (CWBK) partial differential equation is converted to the ordinary differential equation for obtaining new exponential prototype structures. We obtained new results using this technique. We plotted two and three-dimensional surfaces of the results using Wolfram Mathematica software. At the end of this study, we submitted a conclusion in a comprehensive manner.