| English | Arabic | Home | Login |

Published Journal Articles

2023

A Blind Image Steganography Algorithm Based on Knight Tour Algorithm and QR Codes

2023-08
Academic Journal of Nawroz University (Issue : 3) (Volume : 12)
Internet proliferation and technological progress have made multimedia information quickly accessible, but they have also posed a threat to privacy and security. Researchers have been interested in digital images due to their capacity to store large amounts of data due to the possibility of protecting sensitive information through digital steganography. Despite their visual imperceptibility, robustness, and ability to embed information, existing image steganography techniques face several challenges. To overcome these challenges, a novel image steganography approach based on a blind model strategy has been proposed for hiding covert messages. The model consists of two stages: embedding and extracting. In the embedding stage, a suitable cover image is selected using the FAST feature point detector. A text message is then converted to a QR code and embedded in the feature points' neighbors using knight tour steps in a chess game. The result is a stego image that appears identical to the original cover image but contains the secret message in its feature points' neighbors. The extracting stage involves finding the feature points and extracting the QR code to obtain the original text message. Since the feature points were not altered during the embedding process, the proposed model is known as a blind model. This approach eliminates the need for the original cover image during the extracting stage. The proposed model was evaluated using several metrics, including the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). The results demonstrate that the proposed algorithm can effectively embed and extract secret messages with high accuracy while maintaining the visual quality of the cover image with 100% of (SSIM), and a 73.48 average of PSNR.

Optimizing Region of Interest Selection for Effective Embedding in Video Steganography Based on Genetic Algorithms

2023-07
Computer Systems Science and Engineering (Issue : 2) (Volume : 47)
With the widespread use of the internet, there is an increasing need to ensure the security and privacy of transmitted data. This has led to an intensified focus on the study of video steganography, which is a technique that hides data within a video cover to avoid detection. The effectiveness of any steganography method depends on its ability to embed data without altering the original video’s quality while maintaining high efficiency. This paper proposes a new method to video steganography, which involves utilizing a Genetic Algorithm (GA) for identifying the Region of Interest (ROI) in the cover video. The ROI is the area in the video that is the most suitable for data embedding. The secret data is encrypted using the Advanced Encryption Standard (AES), which is a widely accepted encryption standard, before being embedded into the cover video, utilizing up to 10% of the cover video. This process ensures the security and confidentiality of the embedded data. The performance metrics for assessing the proposed method are the Peak Signal-to-Noise Ratio (PSNR) and the encoding and decoding time. The results show that the proposed method has a high embedding capacity and efficiency, with a PSNR ranging between 64 and 75 dBs, which indicates that the embedded data is almost indistinguishable from the original video. Additionally, the method can encode and decode data quickly, making it efficient for real-time applications.

A blind and robust color image watermarking scheme based on DCT and DWT domains

2023-03
Multimedia Tools and Applications
With the emergence of the Internet of Things (IoT) and many smart gadgets that support artificial intelligence, it is easier than ever to acquire, reproduce, and disseminate a large number of digital data. However, these great technologies have made it possible for intruders to easily violate issues related to copyright protection, identity theft, and privacy leakage. To address such issues, several approaches have been developed, among which image watermarking has been proven to be an ideal solution. In this paper, a blind watermarking approach for RGB color images based on joint Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) is proposed. First, a self-adaptive color selecting strategy is used to select either the blue or green channel of the host image for embedding purpose. Subsequently, the selected color is subdivided into non-overlapping square blocks of size 4 × 4, and then DCT is applied to each block. Afterward, the DC values obtained from each block are decomposed into four sub-bands using DWT, and then the LH middle frequency sub-band is further decomposed into four sub-bands using DWT. Lastly, the LH1 obtained from LH is utilized for watermark embedding. To provide security to the proposed approach, the watermark image is encrypted before embedding using a chaotic sequence originated from a logistic map method. Experimental results reveal that the proposed approach not only enhances watermark invisibility but also provide excellent watermark robustness, meeting the main requirements of image watermarking.

Lightweight deep CNN-based models for early detection of COVID-19 patients from chest X-ray images

2023-03
Expert Systems with Applications
Hundreds of millions of people worldwide have recently been infected by the novel Coronavirus disease (COVID-19), causing significant damage to the health, economy, and welfare of the world's population. Moreover, the unprecedented number of patients with COVID-19 has placed a massive burden on healthcare centers, making timely and rapid diagnosis challenging. A crucial step in minimizing the impact of such problems is to automatically detect infected patients and place them under special care as quickly as possible. Deep learning algorithms, such as Convolutional Neural Networks (CNN), can be used to meet this need. Despite the desired results, most of the existing deep learning-based models were built on millions of parameters (weights), which are not applicable to devices with limited resources. Inspired by such fact, in this research, we developed two new lightweight CNN-based diagnostic models for the automatic and early detection of COVID-19 subjects from chest X-ray images. The first model was built for binary classification (COVID-19 and Normal), whereas the second one was built for multiclass classification (COVID-19, viral pneumonia, or normal). The proposed models were tested on a relatively large dataset of chest X-ray images, and the results showed that the accuracy rates of the 2- and 3-class-based classification models are 98.55% and 96.83%, respectively. The results also revealed that our models achieved competitive performance compared with the existing heavyweight models while significantly reducing cost and memory requirements for computing resources. With these findings, we can indicate that our models are helpful to clinicians in making insightful diagnoses of COVID-19 and are potentially easily deployable on devices with limited computational power and resources.
2022

Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models

2022-11
Diagnostics (Issue : 12) (Volume : 12)
Recently, many diseases have negatively impacted people’s lifestyles. Among these, knee osteoarthritis (OA) has been regarded as the primary cause of activity restriction and impairment, particularly in older people. Therefore, quick, accurate, and low-cost computer-based tools for the early prediction of knee OA patients are urgently needed. In this paper, as part of addressing this issue, we developed a new method to efficiently diagnose and classify knee osteoarthritis severity based on the X-ray images to classify knee OA in (i.e., binary and multiclass) in order to study the impact of different class-based, which has not yet been addressed in previous studies. This will provide physicians with a variety of deployment options in the future. Our proposed models are basically divided into two frameworks based on applying pre-trained convolutional neural networks (CNN) for feature extraction as well as fine-tuning the pre-trained CNN using the transfer learning (TL) method. In addition, a traditional machine learning (ML) classifier is used to exploit the enriched feature space to achieve better knee OA classification performance. In the first one, we developed five classes-based models using a proposed pre-trained CNN for feature extraction, principal component analysis (PCA) for dimensionality reduction, and support vector machine (SVM) for classification. While in the second framework, a few changes were made to the steps in the first framework, the concept of TL was used to fine-tune the proposed pre-trained CNN from the first framework to fit the two classes, three classes, and four classes-based models. The proposed models are evaluated on X-ray data, and their performance is compared with the existing state-of-the-art models. It is observed through conducted experimental analysis to demonstrate the efficacy of the proposed approach in improving the classification accuracy in both multiclass and binary class-based in the OA case study. Nonetheless, the empirical results revealed that the fewer multiclass labels used, the better performance achieved, with the binary class labels outperforming all, which reached a 90.8% accuracy rate. Furthermore, the proposed models demonstrated their contribution to early classification in the first stage of the disease to help reduce its progression and improve people’s quality of life.

A Study of Gender Classification Techniques Based on Iris Images: A Deep Survey and Analysis

2022-11
Science Journal of University of Zakho (Issue : 4) (Volume : 10)
Gender classification is attractive in a range of applications, including surveillance and monitoring, corporate profiling, and human-computer interaction. Individuals' identities may be gleaned from information about their gender, which is a kind of soft biometric. Over the years, several methods for determining a person's gender have been devised. Some of the most well-known ones are based on physical characteristics like face, fingerprint, palmprint, DNA, ears, gait, and iris. On the other hand, facial features account for the vast majority of gender classification methods. Also, the iris is a significant biometric trait, because the iris, according to research, remains basically constant during an individual's life. Besides that, the iris is externally visible and is non-invasive to the user, which is important for practical applications. Furthermore, there are already high-quality methods for segmenting and encoding iris images, and the current methods facilitate selecting and extracting attribute vectors from iris textures. This study discusses several approaches to determining gender. The previous works of literature are briefly reviewed. Additionally, there are a variety of methodologies for different steps of gender classification. This study provides researchers with knowledge and analysis of the existing gender classification approaches. Also, it will assist researchers who are interested in this specific area, as well as highlight the gaps and challenges in the field, and finally provide suggestions and future paths for improvement.

A Review on Deep Sequential Models for Forecasting Time Series Data

2022-06
Applied Computational Intelligence and Soft Computing (Volume : 2022)
Deep sequential (DS) models are extensively employed for forecasting time series data since the dawn of the deep learning era, and they provide forecasts for the values required in subsequent time steps. DS models, unlike other traditional statistical models for forecasting time series data, can learn hidden patterns in temporal sequences and have the memorizing data from prior time points. Given the widespread usage of deep sequential models in several domains, a comprehensive study describing their applications is necessary. This work presents a comprehensive review of contemporary deep learning time series models, their performance in diverse domains, and an investigation of the models that were employed in various applications. Three deep sequential models, namely, artificial neural network (ANN), long short-term memory (LSTM), and temporal-conventional neural network (TCNN) along with their applications for forecasting time series data, are elaborated. We showed a comprehensive comparison between such models in terms of application fields, model structure and activation functions, optimizers, and implementation, with a goal of learning more about the optimal model used. Furthermore, the challenges and perspectives of future development of deep sequential models are presented and discussed. We conclude that the LSTM model is widely employed, particularly in the form of a hybrid model, in which the most accurate predictions are made when the shape of hybrids is used as the model.

AR-assisted children book for smart teaching and learning of Turkish alphabets

2022-06
Virtual Reality & Intelligent Hardware (Issue : 3) (Volume : 4)
Augmented reality (AR), virtual reality (VR), and remote-controlled devices are driving the need for a better 5G infrastructure to support faster data transmission. This paper emphasizes that mobile AR is a viable and widespread solution that can easily scale to millions of end-users and educators since it is lightweight, low-cost, and cross-platform. Low-efficiency smart devices and lengthy latency for real-time interactions via regular mobile networks are major barriers to using AR in education. The good news is that the upcoming 5G cellular networks can mitigate some of these issues via network slicing, device-to-device communication, and mobile edge computing. In this paper, we rely on technology to solve some of these problems. The proposed software monitors Image Targets on a printed book and renders 3D objects and alphabet models. In addition, the application considers phonetics. The sound (Phonetic) and 3D representation of the letter are played as soon as an image target is detected. The Turkish alphabet 3D models were created in Adobe Photoshop using Unity3D and the Vuforia SDK. The proposed application teaches Turkish alphabets and phonetics by using 3D object models, 3D letters, and 3D phrases including those letters and sounds.

A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning

2022-03
Diagnostics (Issue : 3) (Volume : 12)
Knee osteoarthritis (KOA) is a degenerative joint disease, which significantly affects middle-aged and elderly people. The majority of KOA is primarily based on hyaline cartilage change, according to medical images. However, technical bottlenecks such as noise, artifacts, and modality pose enormous challenges for an objective and efficient early diagnosis. Therefore, the correct prediction of arthritis is an essential step for effective diagnosis and the prevention of acute arthritis, where early diagnosis and treatment can assist to reduce the progression of KOA. However, predicting the development of KOA is a difficult and urgent problem that, if addressed, could accelerate the development of disease-modifying drugs, in turn helping to avoid millions of total joint replacement procedures each year. In knee joint research and clinical practice there are segmentation approaches that play a significant role in KOA diagnosis and categorization. In this paper, we seek to give an in-depth understanding of a wide range of the most recent methodologies for knee articular bone segmentation; segmentation methods allow the estimation of articular cartilage loss rate, which is utilized in clinical practice for assessing the disease progression and morphological change, ranging from traditional techniques to deep learning (DL)-based techniques. Moreover, the purpose of this work is to give researchers a general review of the currently available methodologies in the area. Therefore, it will help researchers who want to conduct research in the field of KOA, as well as highlight deficiencies and potential considerations in application in clinical practice. Finally, we highlight the diagnostic value of deep learning for future computer-aided diagnostic applications to complete this review.

Reversible Video Steganography Using Quick Response Codes and Modified ElGamal Cryptosystem

2022-03
CMC-Computers, Materials & Continua (Issue : 2) (Volume : 72)
The rapid transmission of multimedia information has been achieved mainly by recent advancements in the Internet's speed and information technology. In spite of this, advancements in technology have resulted in breaches of privacy and data security. When it comes to protecting private information in today's Internet era, digital steganography is vital. Many academics are interested in digital video because it has a great capability for concealing important data. There have been a vast number of video steganography solutions developed lately to guard against the theft of confidential data. The visual imperceptibility, robustness, and embedding capacity of these approaches are all challenges that must be addressed. In this paper, a novel solution to reversible video steganography based on Discrete Wavelet Transform (DWT) and Quick Response (QR) codes is proposed to address these concerns. In order to increase the security level of the suggested method, an enhanced ElGamal cryptosystem has also been proposed. Prior to the embedding stage, the suggested method uses the modified ElGamal algorithm to encrypt secret QR codes. Concurrently, it applies two-dimensional DWT on the Y-component of each video frame resulting in Approximation (LL), Horizontal (LH), Vertical (HL), and Diagonal (HH) sub-bands. Then, the encrypted Low (L), Medium (M), Quantile (Q), and High (H) QR codes are embedded into the HL sub-band, HH sub-band, U-component, and V-component of video frames, respectively, using the Least Significant Bit (LSB) technique. As a consequence of extensive testing of the approach, it was shown to be very secure and highly invisible, as well as highly resistant to attacks from Salt & Pepper, Gaussian, Poisson, and Speckle noises, which has an average Structural Similarity Index (SSIM) of more than 0.91. Aside from visual imperceptibility, the suggested method exceeds current methods in terms of Peak Signal-to-Noise Ratio (PSNR) average of 52.143 dB, and embedding capacity 1 bpp.

Person-independent facial expression recognition based on the fusion of HOG descriptor and cuttlefish algorithm

2022-02
Multimedia Tools and Applications (Issue : 8) (Volume : 81)
This paper proposes an efficient approach for person-independent facial expression recognition based on the fusion of Histogram of Oriented Gradients (HOG) descriptor and Cuttlefish Algorithm (CFA). The proposed approach employs HOG descriptor due to its outstanding performance in pattern recognition, which results in features that are robust against small local pose and illumination variations. However, it produces some irrelevant and noisy features that slow down and degrade the classification performance. To address this problem, a wrapper-based feature selector, called CFA, is used. This is because CFA is a recent bio-inspired feature selection algorithm, which has been shown to effectively select an optimal subset of features while achieving a high accuracy rate. Here, support vector machine classifier is used to evaluate the quality of the features selected by the CFA. Experimental results validated the effectiveness of the proposed approach in attaining a high recognition accuracy rate on three widely adopted datasets: CK+ (97.86%), RaFD (95.15%), and JAFFE (90.95%). Moreover, the results also indicated that the proposed approach yields competitive or even superior results compared to state-of-the-art approaches.
2021

Face Recognition Based on Gabor Feature Extraction Followed by FastICA and LDA

2021-04
CMC-Computers, Materials & Continua (Issue : 2) (Volume : 68)
Over the past few decades, face recognition has become the most effective biometric technique in recognizing people’s identity, as it is widely used in many areas of our daily lives. However, it is a challenging technique since facial images vary in rotations, expressions, and illuminations. To minimize the impact of these challenges, exploiting information from various feature extraction methods is recommended since one of the most critical tasks in face recognition system is the extraction of facial features. Therefore, this paper presents a new approach to face recognition based on the fusion of Gabor-based feature extraction, Fast Independent Component Analysis (FastICA), and Linear Discriminant Analysis (LDA). In the presented method, first, face images are transformed to grayscale and resized to have a uniform size. After that, facial features are extracted from the aligned face image using Gabor, FastICA, and LDA methods. Finally, the nearest distance classifier is utilized to recognize the identity of the individuals. Here, the performance of six distance classifiers, namely Euclidean, Cosine, Bray-Curtis, Mahalanobis, Correlation, and Manhattan, are investigated. Experimental results revealed that the presented method attains a higher rank-one recognition rate compared to the recent approaches in the literature on four benchmarked face datasets: ORL, GT, FEI, and Yale. Moreover, it showed that the proposed method not only helps in better extracting the features but also in improving the overall efficiency of the facial recognition system.
2020

A New Video Steganography Scheme Based on Shi-Tomasi Corner Detector

2020-09
IEEE Access (Issue : 1) (Volume : 8)
Recent developments in the speed of the Internet and information technology have made the rapid exchange of multimedia information possible. However, these developments in technology lead to violations of information security and private information. Digital steganography provides the ability to protect private information that has become essential in the current Internet age. Among all digital media, digital video has become of interest to many researchers due to its high capacity for hiding sensitive data. Numerous video steganography methods have recently been proposed to prevent secret data from being stolen. Nevertheless, these methods have multiple issues related to visual imperceptibly, robustness, and embedding capacity. To tackle these issues, this paper proposes a new approach to video steganography based on the corner point principle and LSBs algorithm. The proposed method first uses Shi-Tomasi algorithm to detect regions of corner points within the cover video frames. Then, it uses 4-LSBs algorithm to hide confidential data inside the identified corner points. Besides, before the embedding process, the proposed method encrypts confidential data using Arnold’s cat map method to boost the security level. Experimental results revealed that the proposed method is highly secure and highly invisible, in addition to its satisfactory robustness against Salt & Pepper noise, Speckle noise, and Gaussian noise attacks, which has an average Structural Similarity Index (SSIM) of more than 0.81. Moreover, the results showed that the proposed method outperforms state-of-the-art methods in terms of visual imperceptibility, which offers excellent peak signal-to-noise ratio (PSNR) of average 60.7 dB, maintaining excellent embedding capacity.

Improving AODV Routing Protocol for Image Transmission Over Mobile Video Sensor Networks

2020-09
IEEE Access (Issue : 1) (Volume : 8)
Wireless Sensor Networks (WSNs) have become extremely popular for sensing, collecting, and transmitting data across different environments. In particular, the AODV protocol is widely used to improve the behavior of WSNs in various applications. A bottleneck in the protocol’s performance is the amount of data that need to be moved between different nodes. This bottleneck becomes evident in applications based on multimedia contents, such as images or videos, in which huge chunks of data need to be delivered over long distances. In this article, we propose a new method to enhance the performance of the AODV protocol. Simulation results show that the proposed method improves the performance of the AODV protocol for image-based applications. The technique increases the quality of the delivered images, extends the network’s lifetime, and reduces the delay and the network overhead associated with providing such images.

Image steganography based on DNA sequence translation properties

2020-06
UKH Journal of Science and Engineering (Issue : 1) (Volume : 4)
Digital communication has become a vital part of daily life nowadays, many applications are using internet-based communication and here the importance of security rose to have a secure communication between two parties to prevent authorized access to sensitive data. These requirements led to a number of research in information security that has been done in the past two decades. Cryptography and steganography are the two main methods that are being used for information security. Cryptography refers to techniques that encrypt a message to be sent to a destination using different methods to be done. On the other hand, steganography is the science of hiding information from others using another cover message or media such as image, audio, video, and DNA sequence. This paper proposed a new method to hide information in an image using the least significant bit (LSB) based on Deoxyribonucleic Acid (DNA) sequence. To accomplish this, the proposed scheme used properties of DNA sequence when codons that consist of three nucleotides are translated to proteins. The LSB of two pixels from the image are taken to represent a codon and then translate them to protein. The secret message bits are injected into codons before the translation process which slightly distorts the image and makes the image less suspicious and hard to detect the hidden message. The experimental results indicate the effeteness of the proposed method.
2017

Compressed and raw video steganography techniques: a comprehensive survey and analysis

2017-10
Multimedia Tools and Applications (Issue : 20) (Volume : 76)
In the last two decades, the science of covertly concealing and communicating data has acquired tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter, e.g., text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques have become important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of the noteworthy development of advanced video over the Internet. The performance of any steganographic method ultimately relies on the imperceptibility, hiding capacity, and robustness. In the past decade, many video steganography methods have been proposed; however, the literature lacks of sufficient survey articles that discuss all techniques. This paper presents a comprehensive study and analysis of numerous cutting edge video steganography methods and their performance evaluations from literature. Both compressed and raw video steganography methods are surveyed. In the compressed domain, video steganography techniques are categorized according to the video compression stages as venues for data hiding such as intra frame prediction, inter frame prediction, motion vectors, transformed and quantized coefficients, and entropy coding. On the other hand, raw video steganography methods are classified into spatial and transform domains. This survey suggests current research directions and recommendations to improve on existing video steganography techniques.

A Robust and Secure Video Steganography Method in DWT-DCT Domains Based on Multiple Object Tracking and ECC

2017-04
IEEE Access (Issue : 1) (Volume : 5)
Over the past few decades, the art of secretly embedding and communicating digital data has gained enormous attention because of the technological development in both digital contents and communication. The imperceptibility, hiding capacity, and robustness against attacks are three main requirements that any video steganography method should take into consideration. In this paper, a robust and secure video steganographic algorithm in discrete wavelet transform (DWT) and discrete cosine transform (DCT) domains based on the multiple object tracking (MOT) algorithm and error correcting codes is proposed. The secret message is preprocessed by applying both Hamming and Bose, Chaudhuri, and Hocquenghem codes for encoding the secret data. First, motion-based MOT algorithm is implemented on host videos to distinguish the regions of interest in the moving objects. Then, the data hiding process is performed by concealing the secret message into the DWT and DCT coefficients of all motion regions in the video depending on foreground masks. Our experimental results illustrate that the suggested algorithm not only improves the embedding capacity and imperceptibility but also enhances its security and robustness by encoding the secret message and withstanding against various attacks.
2016

A video steganography algorithm based on Kanade-Lucas-Tomasi tracking algorithm and error correcting codes

2016-09
Multimedia Tools and Applications (Issue : 17) (Volume : 75)
Due to the significant growth of video data over the Internet, video steganography has become a popular choice. The effectiveness of any steganographic algorithm depends on the embedding efficiency, embedding payload, and robustness against attackers. The lack of the preprocessing stage, less security, and low quality of stego videos are the major issues of many existing steganographic methods. The preprocessing stage includes the procedure of manipulating both secret data and cover videos prior to the embedding stage. In this paper, we address these problems by proposing a novel video steganographic method based on Kanade-Lucas-Tomasi (KLT) tracking using Hamming codes (15, 11). The proposed method consists of four main stages: a) the secret message is preprocessed using Hamming codes (15, 11), producing an encoded message, b) face detection and tracking are performed on the cover videos, determining the region of interest (ROI), defined as facial regions, c) the encoded secret message is embedded using an adaptive LSB substitution method in the ROIs of video frames. In each facial pixel 1 LSB, 2 LSBs, 3 LSBs, and 4 LSBs are utilized to embed 3, 6, 9, and 12 bits of the secret message, respectively, and d) the process of extracting the secret message from the RGB color components of the facial regions of stego video is executed. Experimental results demonstrate that the proposed method achieves higher embedding capacity as well as better visual quality of stego videos. Furthermore, the two preprocessing steps increase the security and robustness of the proposed algorithm as compared to state-of-the-art methods.

An ECC/DCT-Based Robust Video Steganography Algorithm for Secure Data Communication

2016-07
Journal of Cyber Security and Mobility (Issue : 3) (Volume : 5)
Nowadays, the science of information hiding has gained tremendous significance due to advances in information and communication technology. The performance of any steganographic algorithm relies on the embedding efficiency, embedding payload, and robustness against attackers. Low hidden ratio, less security, and low quality of stego videos are the major issues of many existing steganographic methods. In this paper, we propose a novel video steganography method in discrete cosine transform (DCT) domain based on error correcting codes (ECC). To improve the security of the proposed algorithm, a secret message is first encrypted and encoded by using Hamming and BCH codes. Then, it is embedded into the DCT coefficients of video frames. The hidden message is embedded into DCT coefficients of each Y, U, and V planes excluding DC coefficients. The proposed algorithm is tested under two types of videos that contain slow and fast moving objects. The experiential results of the proposed algorithm are compared with three existing methods. The comparison results show that our proposed algorithm outperformed other algorithms. The hidden ratio of the proposed algorithm is approximately 27.53%, which is considered as a high hiding capacity with a minimal tradeoff of the visual quality. The robustness of the proposed algorithm was tested under different attacks.

Back