| English | Arabic | Home | Login |

Published Journal Articles

2022

Identifying Severity Grading of Knee Osteoarthritis from X-ray Images Using an Efficient Mixture of Deep Learning and Machine Learning Models

2022-11
Diagnostics (Issue : 12) (Volume : 12)
Recently, many diseases have negatively impacted people’s lifestyles. Among these, knee osteoarthritis (OA) has been regarded as the primary cause of activity restriction and impairment, particularly in older people. Therefore, quick, accurate, and low-cost computer-based tools for the early prediction of knee OA patients are urgently needed. In this paper, as part of addressing this issue, we developed a new method to efficiently diagnose and classify knee osteoarthritis severity based on the X-ray images to classify knee OA in (i.e., binary and multiclass) in order to study the impact of different class-based, which has not yet been addressed in previous studies. This will provide physicians with a variety of deployment options in the future. Our proposed models are basically divided into two frameworks based on applying pre-trained convolutional neural networks (CNN) for feature extraction as well as fine-tuning the pre-trained CNN using the transfer learning (TL) method. In addition, a traditional machine learning (ML) classifier is used to exploit the enriched feature space to achieve better knee OA classification performance. In the first one, we developed five class-based models using a proposed pre-trained CNN for feature extraction, principal component analysis (PCA) for dimensionality reduction, and support vector machine (SVM) for classification. While in the second framework, a few changes were made to the steps in the first framework, the concept of TL was used to fine-tune the proposed pre-trained CNN from the first framework to fit the two classes, three classes, and four classes-based models. The proposed models are evaluated on X-ray data, and their performance is compared with the existing state-of-the-art models. It is observed through conducted experimental analysis to demonstrate the efficacy of the proposed approach in improving the classification accuracy in both multiclass and binary class-based in the OA case study. Nonetheless, the empirical results revealed that the fewer multiclass labels used, the better performance achieved, with the binary class labels outperforming all, which reached a 90.8% accuracy rate. Furthermore, the proposed models demonstrated their contribution to early classification in the first stage of the disease to help reduce its progression and improve people’s quality of life.

A Comprehensive Survey on Bone Segmentation Techniques in Knee Osteoarthritis Research: From Conventional Methods to Deep Learning

2022-03
Diagnostics (Issue : 12) (Volume : 12)
Knee osteoarthritis (KOA) is a degenerative joint disease, which significantly affects middle-aged and elderly people. The majority of KOA is primarily based on hyaline cartilage change, according to medical images. However, technical bottlenecks such as noise, artifacts, and modality pose enormous challenges for an objective and efficient early diagnosis. Therefore, the correct prediction of arthritis is an essential step for effective diagnosis and the prevention of acute arthritis, where early diagnosis and treatment can assist to reduce the progression of KOA. However, predicting the development of KOA is a difficult and urgent problem that, if addressed, could accelerate the development of disease-modifying drugs, in turn helping to avoid millions of total joint replacement procedures each year. In knee joint research and clinical practice there are segmentation approaches that play a significant role in KOA diagnosis and categorization. In this paper, we seek to give an in-depth understanding of a wide range of the most recent methodologies for knee articular bone segmentation; segmentation methods allow the estimation of articular cartilage loss rate, which is utilized in clinical practice for assessing the disease progression and morphological change, ranging from traditional techniques to deep learning (DL)-based techniques. Moreover, the purpose of this work is to give researchers a general review of the currently available methodologies in the area. Therefore, it will help researchers who want to conduct research in the field of KOA, as well as highlight deficiencies and potential considerations in application in clinical practice. Finally, we highlight the diagnostic value of deep learning for future computer-aided diagnostic applications to complete this review.

Back